1use std::{collections::VecDeque, fmt::Display};
17
18use nautilus_core::correctness::{FAILED, check_predicate_true};
19use nautilus_model::{
20 data::{Bar, QuoteTick, TradeTick},
21 enums::PriceType,
22};
23
24use crate::indicator::{Indicator, MovingAverage};
25
26#[repr(C)]
28#[derive(Debug)]
29#[cfg_attr(
30 feature = "python",
31 pyo3::pyclass(module = "posei_trader.core.nautilus_pyo3.indicators")
32)]
33pub struct WeightedMovingAverage {
34 pub period: usize,
36 pub weights: Vec<f64>,
38 pub price_type: PriceType,
40 pub value: f64,
42 pub initialized: bool,
44 pub inputs: VecDeque<f64>,
46}
47
48impl Display for WeightedMovingAverage {
49 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
50 write!(f, "{}({},{:?})", self.name(), self.period, self.weights)
51 }
52}
53
54impl WeightedMovingAverage {
55 #[must_use]
64 pub fn new(period: usize, weights: Vec<f64>, price_type: Option<PriceType>) -> Self {
65 Self::new_checked(period, weights, price_type).expect(FAILED)
66 }
67
68 pub fn new_checked(
77 period: usize,
78 weights: Vec<f64>,
79 price_type: Option<PriceType>,
80 ) -> anyhow::Result<Self> {
81 const EPS: f64 = f64::EPSILON; check_predicate_true(period > 0, "`period` must be positive")?;
84
85 check_predicate_true(
86 period == weights.len(),
87 "`period` must equal `weights.len()`",
88 )?;
89
90 let weight_sum: f64 = weights.iter().copied().sum();
91 check_predicate_true(
92 weight_sum > EPS,
93 "`weights` sum must be positive and > f64::EPSILON",
94 )?;
95
96 Ok(Self {
97 period,
98 weights,
99 price_type: price_type.unwrap_or(PriceType::Last),
100 value: 0.0,
101 inputs: VecDeque::with_capacity(period),
102 initialized: false,
103 })
104 }
105
106 fn weighted_average(&self) -> f64 {
107 let n = self.inputs.len();
108 let weights_slice = &self.weights[self.period - n..];
109
110 let mut sum = 0.0;
111 let mut weight_sum = 0.0;
112
113 for (input, weight) in self.inputs.iter().rev().zip(weights_slice.iter().rev()) {
114 sum += input * weight;
115 weight_sum += weight;
116 }
117 sum / weight_sum
118 }
119}
120
121impl Indicator for WeightedMovingAverage {
122 fn name(&self) -> String {
123 stringify!(WeightedMovingAverage).to_string()
124 }
125
126 fn has_inputs(&self) -> bool {
127 !self.inputs.is_empty()
128 }
129
130 fn initialized(&self) -> bool {
131 self.initialized
132 }
133
134 fn handle_quote(&mut self, quote: &QuoteTick) {
135 self.update_raw(quote.extract_price(self.price_type).into());
136 }
137
138 fn handle_trade(&mut self, trade: &TradeTick) {
139 self.update_raw((&trade.price).into());
140 }
141
142 fn handle_bar(&mut self, bar: &Bar) {
143 self.update_raw((&bar.close).into());
144 }
145
146 fn reset(&mut self) {
147 self.value = 0.0;
148 self.initialized = false;
149 self.inputs.clear();
150 }
151}
152
153impl MovingAverage for WeightedMovingAverage {
154 fn value(&self) -> f64 {
155 self.value
156 }
157
158 fn count(&self) -> usize {
159 self.inputs.len()
160 }
161
162 fn update_raw(&mut self, value: f64) {
163 if self.inputs.len() == self.period {
164 self.inputs.pop_front();
165 }
166 self.inputs.push_back(value);
167
168 self.value = self.weighted_average();
169
170 self.initialized = self.count() >= self.period;
171 }
172}
173
174#[cfg(test)]
178mod tests {
179 use std::{
180 collections::VecDeque,
181 f64::{INFINITY, NAN},
182 };
183
184 use rstest::rstest;
185
186 use crate::{
187 average::wma::WeightedMovingAverage,
188 indicator::{Indicator, MovingAverage},
189 stubs::*,
190 };
191
192 #[rstest]
193 fn test_wma_initialized(indicator_wma_10: WeightedMovingAverage) {
194 let display_str = format!("{indicator_wma_10}");
195 assert_eq!(
196 display_str,
197 "WeightedMovingAverage(10,[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])"
198 );
199 assert_eq!(indicator_wma_10.name(), "WeightedMovingAverage");
200 assert!(!indicator_wma_10.has_inputs());
201 assert!(!indicator_wma_10.initialized());
202 }
203
204 #[rstest]
205 #[should_panic]
206 fn test_different_weights_len_and_period_error() {
207 let _ = WeightedMovingAverage::new(10, vec![0.5, 0.5, 0.5], None);
208 }
209
210 #[rstest]
211 fn test_value_with_one_input(mut indicator_wma_10: WeightedMovingAverage) {
212 indicator_wma_10.update_raw(1.0);
213 assert_eq!(indicator_wma_10.value, 1.0);
214 }
215
216 #[rstest]
217 fn test_value_with_two_inputs_equal_weights() {
218 let mut wma = WeightedMovingAverage::new(2, vec![0.5, 0.5], None);
219 wma.update_raw(1.0);
220 wma.update_raw(2.0);
221 assert_eq!(wma.value, 1.5);
222 }
223
224 #[rstest]
225 fn test_value_with_four_inputs_equal_weights() {
226 let mut wma = WeightedMovingAverage::new(4, vec![0.25, 0.25, 0.25, 0.25], None);
227 wma.update_raw(1.0);
228 wma.update_raw(2.0);
229 wma.update_raw(3.0);
230 wma.update_raw(4.0);
231 assert_eq!(wma.value, 2.5);
232 }
233
234 #[rstest]
235 fn test_value_with_two_inputs(mut indicator_wma_10: WeightedMovingAverage) {
236 indicator_wma_10.update_raw(1.0);
237 indicator_wma_10.update_raw(2.0);
238 let result = 2.0f64.mul_add(1.0, 1.0 * 0.9) / 1.9;
239 assert_eq!(indicator_wma_10.value, result);
240 }
241
242 #[rstest]
243 fn test_value_with_three_inputs(mut indicator_wma_10: WeightedMovingAverage) {
244 indicator_wma_10.update_raw(1.0);
245 indicator_wma_10.update_raw(2.0);
246 indicator_wma_10.update_raw(3.0);
247 let result = 1.0f64.mul_add(0.8, 3.0f64.mul_add(1.0, 2.0 * 0.9)) / (1.0 + 0.9 + 0.8);
248 assert_eq!(indicator_wma_10.value, result);
249 }
250
251 #[rstest]
252 fn test_value_expected_with_exact_period(mut indicator_wma_10: WeightedMovingAverage) {
253 for i in 1..11 {
254 indicator_wma_10.update_raw(f64::from(i));
255 }
256 assert_eq!(indicator_wma_10.value, 7.0);
257 }
258
259 #[rstest]
260 fn test_value_expected_with_more_inputs(mut indicator_wma_10: WeightedMovingAverage) {
261 for i in 1..=11 {
262 indicator_wma_10.update_raw(f64::from(i));
263 }
264 assert_eq!(indicator_wma_10.value(), 8.000_000_000_000_002);
265 }
266
267 #[rstest]
268 fn test_reset(mut indicator_wma_10: WeightedMovingAverage) {
269 indicator_wma_10.update_raw(1.0);
270 indicator_wma_10.update_raw(2.0);
271 indicator_wma_10.reset();
272 assert_eq!(indicator_wma_10.value, 0.0);
273 assert_eq!(indicator_wma_10.count(), 0);
274 assert!(!indicator_wma_10.initialized);
275 }
276
277 #[rstest]
278 #[should_panic]
279 fn new_panics_on_zero_period() {
280 let _ = WeightedMovingAverage::new(0, vec![1.0], None);
281 }
282
283 #[rstest]
284 fn new_checked_err_on_zero_period() {
285 let res = WeightedMovingAverage::new_checked(0, vec![1.0], None);
286 assert!(res.is_err());
287 }
288
289 #[rstest]
290 #[should_panic]
291 fn new_panics_on_zero_weight_sum() {
292 let _ = WeightedMovingAverage::new(3, vec![0.0, 0.0, 0.0], None);
293 }
294
295 #[rstest]
296 fn new_checked_err_on_zero_weight_sum() {
297 let res = WeightedMovingAverage::new_checked(3, vec![0.0, 0.0, 0.0], None);
298 assert!(res.is_err());
299 }
300
301 #[rstest]
302 #[should_panic]
303 fn new_panics_when_weight_sum_below_epsilon() {
304 let tiny = f64::EPSILON / 10.0;
305 let _ = WeightedMovingAverage::new(3, vec![tiny; 3], None);
306 }
307
308 #[rstest]
309 fn initialized_flag_transitions() {
310 let period = 3;
311 let weights = vec![1.0, 2.0, 3.0];
312 let mut wma = WeightedMovingAverage::new(period, weights, None);
313
314 assert!(!wma.initialized());
315
316 for i in 0..period {
317 wma.update_raw(i as f64);
318 let expected = (i + 1) >= period;
319 assert_eq!(wma.initialized(), expected);
320 }
321 assert!(wma.initialized());
322 }
323
324 #[rstest]
325 fn count_matches_inputs_and_has_inputs() {
326 let mut wma = WeightedMovingAverage::new(4, vec![0.25; 4], None);
327
328 assert_eq!(wma.count(), 0);
329 assert!(!wma.has_inputs());
330
331 wma.update_raw(1.0);
332 wma.update_raw(2.0);
333 assert_eq!(wma.count(), 2);
334 assert!(wma.has_inputs());
335 }
336
337 #[rstest]
338 fn reset_restores_pristine_state() {
339 let mut wma = WeightedMovingAverage::new(2, vec![0.5, 0.5], None);
340 wma.update_raw(1.0);
341 wma.update_raw(2.0);
342 assert!(wma.initialized());
343
344 wma.reset();
345
346 assert_eq!(wma.count(), 0);
347 assert_eq!(wma.value(), 0.0);
348 assert!(!wma.initialized());
349 assert!(!wma.has_inputs());
350 }
351
352 #[rstest]
353 fn weighted_average_with_non_uniform_weights() {
354 let mut wma = WeightedMovingAverage::new(3, vec![1.0, 2.0, 3.0], None);
355 wma.update_raw(10.0);
356 wma.update_raw(20.0);
357 wma.update_raw(30.0);
358 let expected = 23.333_333_333_333_332;
359 let tol = f64::EPSILON.sqrt();
360 assert!(
361 (wma.value() - expected).abs() < tol,
362 "value = {}, expected ≈ {}",
363 wma.value(),
364 expected
365 );
366 }
367
368 #[rstest]
369 fn test_window_never_exceeds_period(mut indicator_wma_10: WeightedMovingAverage) {
370 for i in 0..100 {
371 indicator_wma_10.update_raw(f64::from(i));
372 assert!(indicator_wma_10.count() <= indicator_wma_10.period);
373 }
374 }
375
376 #[rstest]
377 fn test_negative_weights_positive_sum() {
378 let period = 3;
379 let weights = vec![-1.0, 2.0, 2.0];
380 let mut wma = WeightedMovingAverage::new(period, weights, None);
381 wma.update_raw(1.0);
382 wma.update_raw(2.0);
383 wma.update_raw(3.0);
384
385 let expected = 2.0f64.mul_add(3.0, 2.0f64.mul_add(2.0, -1.0)) / 3.0;
386 let tol = f64::EPSILON.sqrt();
387 assert!((wma.value() - expected).abs() < tol);
388 }
389
390 #[rstest]
391 fn test_nan_input_propagates() {
392 use std::f64::NAN;
393
394 let mut wma = WeightedMovingAverage::new(2, vec![0.5, 0.5], None);
395 wma.update_raw(1.0);
396 wma.update_raw(NAN);
397
398 assert!(wma.value().is_nan());
399 }
400
401 #[rstest]
402 #[should_panic]
403 fn new_panics_when_weight_sum_equals_epsilon() {
404 let eps_third = f64::EPSILON / 3.0;
405 let _ = WeightedMovingAverage::new(3, vec![eps_third; 3], None);
406 }
407
408 #[rstest]
409 fn new_checked_err_when_weight_sum_equals_epsilon() {
410 let eps_third = f64::EPSILON / 3.0;
411 let res = WeightedMovingAverage::new_checked(3, vec![eps_third; 3], None);
412 assert!(res.is_err());
413 }
414
415 #[rstest]
416 fn new_checked_err_when_weight_sum_below_epsilon() {
417 let w = f64::EPSILON * 0.9;
418 let res = WeightedMovingAverage::new_checked(1, vec![w], None);
419 assert!(res.is_err());
420 }
421
422 #[rstest]
423 fn new_ok_when_weight_sum_above_epsilon() {
424 let w = f64::EPSILON * 1.1;
425 let res = WeightedMovingAverage::new_checked(1, vec![w], None);
426 assert!(res.is_ok());
427 }
428
429 #[rstest]
430 #[should_panic]
431 fn new_panics_on_cancelled_weights_sum() {
432 let _ = WeightedMovingAverage::new(3, vec![1.0, -1.0, 0.0], None);
433 }
434
435 #[rstest]
436 fn new_checked_err_on_cancelled_weights_sum() {
437 let res = WeightedMovingAverage::new_checked(3, vec![1.0, -1.0, 0.0], None);
438 assert!(res.is_err());
439 }
440
441 #[rstest]
442 fn single_period_returns_latest_input() {
443 let mut wma = WeightedMovingAverage::new(1, vec![1.0], None);
444 for i in 0..5 {
445 let v = f64::from(i);
446 wma.update_raw(v);
447 assert_eq!(wma.value(), v);
448 }
449 }
450
451 #[rstest]
452 fn value_with_sparse_weights() {
453 let mut wma = WeightedMovingAverage::new(3, vec![0.0, 1.0, 0.0], None);
454 wma.update_raw(10.0);
455 wma.update_raw(20.0);
456 wma.update_raw(30.0);
457 assert_eq!(wma.value(), 20.0);
458 }
459
460 #[rstest]
461 fn warm_up_len1() {
462 let mut wma = WeightedMovingAverage::new(4, vec![1.0, 2.0, 3.0, 4.0], None);
463 wma.update_raw(42.0);
464 assert_eq!(wma.value(), 42.0);
465 }
466
467 #[rstest]
468 fn warm_up_len2() {
469 let mut wma = WeightedMovingAverage::new(4, vec![1.0, 2.0, 3.0, 4.0], None);
470 wma.update_raw(10.0);
471 wma.update_raw(20.0);
472 let expected = 20.0f64.mul_add(4.0, 10.0 * 3.0) / (4.0 + 3.0);
473 assert_eq!(wma.value(), expected);
474 }
475
476 #[rstest]
477 fn warm_up_len3() {
478 let mut wma = WeightedMovingAverage::new(4, vec![1.0, 2.0, 3.0, 4.0], None);
479 wma.update_raw(1.0);
480 wma.update_raw(2.0);
481 wma.update_raw(3.0);
482 let expected = 1.0f64.mul_add(2.0, 3.0f64.mul_add(4.0, 2.0 * 3.0)) / (4.0 + 3.0 + 2.0);
483 assert_eq!(wma.value(), expected);
484 }
485
486 #[rstest]
487 fn input_window_contains_latest_period() {
488 let period = 3;
489 let mut wma = WeightedMovingAverage::new(period, vec![1.0; period], None);
490 let vals = [1.0, 2.0, 3.0, 4.0];
491 for v in vals {
492 wma.update_raw(v);
493 }
494 let expected: Vec<f64> = vals[vals.len() - period..].to_vec();
495 assert_eq!(wma.inputs.iter().copied().collect::<Vec<_>>(), expected);
496 }
497
498 #[rstest]
499 fn window_slides_correctly() {
500 let mut wma = WeightedMovingAverage::new(2, vec![1.0; 2], None);
501 wma.update_raw(1.0);
502 assert_eq!(wma.inputs.iter().copied().collect::<Vec<_>>(), vec![1.0]);
503 wma.update_raw(2.0);
504 assert_eq!(
505 wma.inputs.iter().copied().collect::<Vec<_>>(),
506 vec![1.0, 2.0]
507 );
508 wma.update_raw(3.0);
509 assert_eq!(
510 wma.inputs.iter().copied().collect::<Vec<_>>(),
511 vec![2.0, 3.0]
512 );
513 }
514
515 #[rstest]
516 fn window_len_constant_after_many_updates() {
517 let period = 5;
518 let mut wma = WeightedMovingAverage::new(period, vec![1.0; period], None);
519 for i in 0..100 {
520 wma.update_raw(i as f64);
521 assert_eq!(wma.inputs.len(), period.min(i + 1));
522 }
523 }
524
525 #[rstest]
526 #[should_panic]
527 fn new_panics_on_nan_weight() {
528 let _ = WeightedMovingAverage::new(2, vec![NAN, 1.0], None);
529 }
530
531 #[rstest]
532 fn new_ok_with_infinite_weight() {
533 let res = WeightedMovingAverage::new_checked(2, vec![INFINITY, 1.0], None);
534 assert!(res.is_ok());
535 }
536
537 #[rstest]
538 #[should_panic]
539 fn new_panics_on_empty_weights() {
540 let _ = WeightedMovingAverage::new(1, Vec::new(), None);
541 }
542
543 #[rstest]
544 fn inf_input_propagates() {
545 let mut wma = WeightedMovingAverage::new(2, vec![0.5, 0.5], None);
546 wma.update_raw(1.0);
547 wma.update_raw(INFINITY);
548 assert!(wma.value().is_infinite());
549 }
550
551 #[rstest]
552 fn warm_up_with_front_zero_weights() {
553 let mut wma = WeightedMovingAverage::new(4, vec![0.0, 0.0, 1.0, 1.0], None);
554 wma.update_raw(10.0);
555 wma.update_raw(20.0);
556 let expected = 20.0f64.mul_add(1.0, 10.0 * 1.0) / 2.0;
557 assert_eq!(wma.value(), expected);
558 }
559
560 #[rstest]
561 fn vecdeque_grows_without_pop() {
562 let period = 3;
563 let mut buf: VecDeque<usize> = VecDeque::with_capacity(period);
564 for i in 0..=period {
565 buf.push_back(i);
566 }
567 assert_eq!(buf.len(), period + 1);
568 }
569
570 #[rstest]
571 fn vecdeque_sliding_window_with_pop() {
572 let period = 3;
573 let mut buf: VecDeque<usize> = VecDeque::with_capacity(period);
574 for i in 0..10 {
575 if buf.len() == period {
576 buf.pop_front();
577 }
578 buf.push_back(i);
579 assert!(buf.len() <= period);
580 }
581 assert_eq!(buf.len(), period);
582 }
583}