nautilus_analysis/statistics/
loser_min.rs1use crate::statistic::PortfolioStatistic;
17
18#[repr(C)]
19#[derive(Debug)]
20#[cfg_attr(
21 feature = "python",
22 pyo3::pyclass(module = "posei_trader.core.nautilus_pyo3.analysis")
23)]
24pub struct MinLoser {}
25
26impl PortfolioStatistic for MinLoser {
27 type Item = f64;
28
29 fn name(&self) -> String {
30 stringify!(MinLoser).to_string()
31 }
32
33 fn calculate_from_realized_pnls(&self, realized_pnls: &[f64]) -> Option<Self::Item> {
34 if realized_pnls.is_empty() {
35 return Some(0.0);
36 }
37
38 realized_pnls
39 .iter()
40 .filter(|&&pnl| pnl < 0.0)
41 .max_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
42 .copied()
43 }
44}
45
46#[cfg(test)]
47mod tests {
48 use rstest::rstest;
49
50 use super::*;
51
52 #[rstest]
53 fn test_empty_pnls() {
54 let min_loser = MinLoser {};
55 let result = min_loser.calculate_from_realized_pnls(&[]);
56 assert!(result.is_some());
57 assert_eq!(result.unwrap(), 0.0);
58 }
59
60 #[rstest]
61 fn test_all_positive() {
62 let min_loser = MinLoser {};
63 let pnls = vec![10.0, 20.0, 30.0];
64 let result = min_loser.calculate_from_realized_pnls(&pnls);
65 assert!(result.is_none());
66 }
67
68 #[rstest]
69 fn test_all_negative() {
70 let min_loser = MinLoser {};
71 let pnls = vec![-10.0, -20.0, -30.0];
72 let result = min_loser.calculate_from_realized_pnls(&pnls);
73 assert!(result.is_some());
74 assert_eq!(result.unwrap(), -10.0);
75 }
76
77 #[rstest]
78 fn test_mixed_pnls() {
79 let min_loser = MinLoser {};
80 let pnls = vec![10.0, -20.0, 30.0, -40.0];
81 let result = min_loser.calculate_from_realized_pnls(&pnls);
82 assert!(result.is_some());
83 assert_eq!(result.unwrap(), -20.0);
84 }
85
86 #[rstest]
87 fn test_with_zero() {
88 let min_loser = MinLoser {};
89 let pnls = vec![10.0, 0.0, -20.0, -30.0];
90 let result = min_loser.calculate_from_realized_pnls(&pnls);
91 assert!(result.is_some());
92 assert_eq!(result.unwrap(), -20.0);
93 }
94
95 #[rstest]
96 fn test_single_negative() {
97 let min_loser = MinLoser {};
98 let pnls = vec![-10.0];
99 let result = min_loser.calculate_from_realized_pnls(&pnls);
100 assert!(result.is_some());
101 assert_eq!(result.unwrap(), -10.0);
102 }
103
104 #[rstest]
105 fn test_name() {
106 let min_loser = MinLoser {};
107 assert_eq!(min_loser.name(), "MinLoser");
108 }
109}