nautilus_analysis/statistics/
win_rate.rs1use crate::statistic::PortfolioStatistic;
17
18#[repr(C)]
25#[derive(Debug)]
26#[cfg_attr(
27 feature = "python",
28 pyo3::pyclass(module = "posei_trader.core.nautilus_pyo3.analysis")
29)]
30pub struct WinRate {}
31
32impl PortfolioStatistic for WinRate {
33 type Item = f64;
34
35 fn name(&self) -> String {
36 stringify!(WinRate).to_string()
37 }
38
39 fn calculate_from_realized_pnls(&self, realized_pnls: &[f64]) -> Option<Self::Item> {
40 if realized_pnls.is_empty() {
41 return Some(0.0);
42 }
43
44 let (winners, losers): (Vec<f64>, Vec<f64>) =
45 realized_pnls.iter().partition(|&&pnl| pnl > 0.0);
46
47 let total_trades = winners.len() + losers.len();
48 Some(winners.len() as f64 / total_trades.max(1) as f64)
49 }
50}
51
52#[cfg(test)]
53mod tests {
54 use rstest::rstest;
55
56 use super::*;
57
58 #[rstest]
59 fn test_empty_pnls() {
60 let win_rate = WinRate {};
61 let result = win_rate.calculate_from_realized_pnls(&[]);
62 assert!(result.is_some());
63 assert_eq!(result.unwrap(), 0.0);
64 }
65
66 #[rstest]
67 fn test_all_winning_trades() {
68 let win_rate = WinRate {};
69 let realized_pnls = vec![100.0, 50.0, 200.0];
70 let result = win_rate.calculate_from_realized_pnls(&realized_pnls);
71 assert!(result.is_some());
72 assert_eq!(result.unwrap(), 1.0);
73 }
74
75 #[rstest]
76 fn test_all_losing_trades() {
77 let win_rate = WinRate {};
78 let realized_pnls = vec![-100.0, -50.0, -200.0];
79 let result = win_rate.calculate_from_realized_pnls(&realized_pnls);
80 assert!(result.is_some());
81 assert_eq!(result.unwrap(), 0.0);
82 }
83
84 #[rstest]
85 fn test_mixed_trades() {
86 let win_rate = WinRate {};
87 let realized_pnls = vec![100.0, -50.0, 200.0, -100.0];
88 let result = win_rate.calculate_from_realized_pnls(&realized_pnls);
89 assert!(result.is_some());
90 assert_eq!(result.unwrap(), 0.5);
91 }
92
93 #[rstest]
94 fn test_name() {
95 let win_rate = WinRate {};
96 assert_eq!(win_rate.name(), "WinRate");
97 }
98}