nautilus_core/
time.rs

1// -------------------------------------------------------------------------------------------------
2//  Copyright (C) 2015-2025 Posei Systems Pty Ltd. All rights reserved.
3//  https://poseitrader.io
4//
5//  Licensed under the GNU Lesser General Public License Version 3.0 (the "License");
6//  You may not use this file except in compliance with the License.
7//  You may obtain a copy of the License at https://www.gnu.org/licenses/lgpl-3.0.en.html
8//
9//  Unless required by applicable law or agreed to in writing, software
10//  distributed under the License is distributed on an "AS IS" BASIS,
11//  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12//  See the License for the specific language governing permissions and
13//  limitations under the License.
14// -------------------------------------------------------------------------------------------------
15
16//! The core `AtomicTime` for real-time and static clocks.
17//!
18//! This module provides an atomic time abstraction that supports both real-time and static
19//! clocks. It ensures thread-safe operations and monotonic time retrieval with nanosecond precision.
20//!
21//! # Modes
22//!
23//! - **Real-time mode:** The clock continuously syncs with system wall-clock time (via
24//!   [`SystemTime::now()`]). To ensure strict monotonic increments across multiple threads,
25//!   the internal updates use an atomic compare-and-exchange loop (`time_since_epoch`).
26//!   While this guarantees that every new timestamp is at least one nanosecond greater than the
27//!   last, it may introduce higher contention if many threads call it heavily.
28//!
29//! - **Static mode:** The clock is manually controlled via [`AtomicTime::set_time`] or [`AtomicTime::increment_time`],
30//!   which can be useful for simulations or backtesting. You can switch modes at runtime using
31//!   [`AtomicTime::make_realtime`] or [`AtomicTime::make_static`]. In **static mode**, we use
32//!   acquire/release semantics so that updates from one thread can be observed by another;
33//!   however, we do not enforce strict global ordering for manual updates. If you need strong,
34//!   multi-threaded ordering in **static mode**, you must coordinate higher-level synchronization yourself.
35
36use std::{
37    ops::Deref,
38    sync::{
39        OnceLock,
40        atomic::{AtomicBool, AtomicU64, Ordering},
41    },
42    time::{Duration, SystemTime, UNIX_EPOCH},
43};
44
45use crate::{
46    UnixNanos,
47    datetime::{NANOSECONDS_IN_MICROSECOND, NANOSECONDS_IN_MILLISECOND, NANOSECONDS_IN_SECOND},
48};
49
50/// Global atomic time in **real-time mode** for use across the system.
51///
52/// This clock operates in **real-time mode**, synchronizing with the system clock.
53/// It provides globally unique, strictly increasing timestamps across threads.
54pub static ATOMIC_CLOCK_REALTIME: OnceLock<AtomicTime> = OnceLock::new();
55
56/// Global atomic time in **static mode** for use across the system.
57///
58/// This clock operates in **static mode**, where the time value can be set or incremented
59/// manually. Useful for backtesting or simulated time control.
60pub static ATOMIC_CLOCK_STATIC: OnceLock<AtomicTime> = OnceLock::new();
61
62/// Returns a static reference to the global atomic clock in **real-time mode**.
63///
64/// This clock uses [`AtomicTime::time_since_epoch`] under the hood, ensuring strictly increasing
65/// timestamps across threads.
66pub fn get_atomic_clock_realtime() -> &'static AtomicTime {
67    ATOMIC_CLOCK_REALTIME.get_or_init(AtomicTime::default)
68}
69
70/// Returns a static reference to the global atomic clock in **static mode**.
71///
72/// This clock allows manual time control via [`AtomicTime::set_time`] or [`AtomicTime::increment_time`],
73/// and does not automatically sync with system time.
74pub fn get_atomic_clock_static() -> &'static AtomicTime {
75    ATOMIC_CLOCK_STATIC.get_or_init(|| AtomicTime::new(false, UnixNanos::default()))
76}
77
78/// Returns the duration since the UNIX epoch based on [`SystemTime::now()`].
79///
80/// # Panics
81///
82/// Panics if the system time is set before the UNIX epoch.
83#[inline(always)]
84#[must_use]
85pub fn duration_since_unix_epoch() -> Duration {
86    // SAFETY: The expect() is acceptable here because:
87    // - SystemTime failure indicates catastrophic system clock issues
88    // - This would affect the entire application's ability to function
89    // - Alternative error handling would complicate all time-dependent code paths
90    // - Such failures are extremely rare in practice and indicate hardware/OS problems
91    SystemTime::now()
92        .duration_since(UNIX_EPOCH)
93        .expect("Error calling `SystemTime`")
94}
95
96/// Returns the current UNIX time in nanoseconds, based on [`SystemTime::now()`].
97///
98/// # Panics
99///
100/// Panics if the duration in nanoseconds exceeds `u64::MAX`.
101#[inline(always)]
102#[must_use]
103pub fn nanos_since_unix_epoch() -> u64 {
104    let ns = duration_since_unix_epoch().as_nanos();
105    assert!(
106        (ns <= u128::from(u64::MAX)),
107        "System time overflow: value exceeds u64::MAX nanoseconds"
108    );
109    ns as u64
110}
111
112/// Represents an atomic timekeeping structure.
113///
114/// [`AtomicTime`] can act as a real-time clock or static clock based on its mode.
115/// It uses an [`AtomicU64`] to atomically update the value using only immutable
116/// references.
117///
118/// The `realtime` flag indicates which mode the clock is currently in.
119/// For concurrency, this struct uses atomic operations with appropriate memory orderings:
120/// - **Acquire/Release** for reading/writing in **static mode**,
121/// - **Compare-and-exchange (`AcqRel`)** in real-time mode to guarantee monotonic increments.
122#[repr(C)]
123#[derive(Debug)]
124pub struct AtomicTime {
125    /// Indicates whether the clock is operating in **real-time mode** (`true`) or **static mode** (`false`)
126    pub realtime: AtomicBool,
127    /// The last recorded time (in UNIX nanoseconds). Updated atomically with compare-and-exchange
128    /// in **real-time mode**, or simple store/fetch in **static mode**.
129    pub timestamp_ns: AtomicU64,
130}
131
132impl Deref for AtomicTime {
133    type Target = AtomicU64;
134
135    fn deref(&self) -> &Self::Target {
136        &self.timestamp_ns
137    }
138}
139
140impl Default for AtomicTime {
141    /// Creates a new default [`AtomicTime`] instance in **real-time mode**, starting at the current system time.
142    fn default() -> Self {
143        Self::new(true, UnixNanos::default())
144    }
145}
146
147impl AtomicTime {
148    /// Creates a new [`AtomicTime`] instance.
149    ///
150    /// - If `realtime` is `true`, the provided `time` is used only as an initial placeholder
151    ///   and will quickly be overridden by calls to [`AtomicTime::time_since_epoch`].
152    /// - If `realtime` is `false`, this clock starts in **static mode**, with the given `time`
153    ///   as its current value.
154    #[must_use]
155    pub fn new(realtime: bool, time: UnixNanos) -> Self {
156        Self {
157            realtime: AtomicBool::new(realtime),
158            timestamp_ns: AtomicU64::new(time.into()),
159        }
160    }
161
162    /// Returns the current time in nanoseconds, based on the clock’s mode.
163    ///
164    /// - In **real-time mode**, calls [`AtomicTime::time_since_epoch`], ensuring strictly increasing
165    ///   timestamps across threads, using `AcqRel` semantics for the underlying atomic.
166    /// - In **static mode**, reads the stored time using [`Ordering::Acquire`]. Updates by other
167    ///   threads using [`AtomicTime::set_time`] or [`AtomicTime::increment_time`] (Release/AcqRel)
168    ///   will be visible here.
169    #[must_use]
170    pub fn get_time_ns(&self) -> UnixNanos {
171        if self.realtime.load(Ordering::Acquire) {
172            self.time_since_epoch()
173        } else {
174            UnixNanos::from(self.timestamp_ns.load(Ordering::Acquire))
175        }
176    }
177
178    /// Returns the current time as microseconds.
179    #[must_use]
180    pub fn get_time_us(&self) -> u64 {
181        self.get_time_ns().as_u64() / NANOSECONDS_IN_MICROSECOND
182    }
183
184    /// Returns the current time as milliseconds.
185    #[must_use]
186    pub fn get_time_ms(&self) -> u64 {
187        self.get_time_ns().as_u64() / NANOSECONDS_IN_MILLISECOND
188    }
189
190    /// Returns the current time as seconds.
191    #[must_use]
192    #[allow(clippy::cast_precision_loss)]
193    pub fn get_time(&self) -> f64 {
194        self.get_time_ns().as_f64() / (NANOSECONDS_IN_SECOND as f64)
195    }
196
197    /// Manually sets a new time for the clock (only meaningful in **static mode**).
198    ///
199    /// This uses an atomic store with [`Ordering::Release`], so any thread reading with
200    /// [`Ordering::Acquire`] will see the updated time. This does *not* enforce a total ordering
201    /// among all threads, but is enough to ensure that once a thread sees this update, it also
202    /// sees all writes made before this call in the writing thread.
203    ///
204    /// Typically used in single-threaded scenarios or coordinated concurrency in **static mode**,
205    /// since there’s no global ordering across threads.
206    ///
207    /// # Panics
208    ///
209    /// Panics if invoked when in real-time mode.
210    pub fn set_time(&self, time: UnixNanos) {
211        assert!(
212            !self.realtime.load(Ordering::Acquire),
213            "Cannot set time while clock is in realtime mode"
214        );
215
216        self.store(time.into(), Ordering::Release);
217    }
218
219    /// Increments the current (static-mode) time by `delta` nanoseconds and returns the updated value.
220    ///
221    /// Internally this uses `fetch_add` with [`Ordering::AcqRel`] to ensure the increment is
222    /// atomic and visible to readers using `Acquire` loads.
223    ///
224    /// # Panics
225    ///
226    /// Panics if called while the clock is in real-time mode.
227    pub fn increment_time(&self, delta: u64) -> UnixNanos {
228        assert!(
229            !self.realtime.load(Ordering::Acquire),
230            "Cannot increment time while clock is in realtime mode"
231        );
232
233        let prev = self.fetch_add(delta, Ordering::AcqRel);
234        UnixNanos::from(prev + delta)
235    }
236
237    /// Retrieves and updates the current “real-time” clock, returning a strictly increasing
238    /// timestamp based on system time.
239    ///
240    /// Internally:
241    /// - We fetch `now` from [`SystemTime::now()`].
242    /// - We do an atomic compare-and-exchange (using [`Ordering::AcqRel`]) to ensure the stored
243    ///   timestamp is never less than the last timestamp.
244    ///
245    /// This ensures:
246    /// 1. **Monotonic increments**: The returned timestamp is strictly greater than the previous
247    ///    one (by at least 1 nanosecond).
248    /// 2. **No backward jumps**: If the OS time moves backward, we ignore that shift to preserve
249    ///    monotonicity.
250    /// 3. **Visibility**: In a multi-threaded environment, other threads see the updated value
251    ///    once this compare-and-exchange completes.
252    ///
253    /// # Panics
254    ///
255    /// Panics if the internal counter has reached `u64::MAX`, which would indicate the process has
256    /// been running for longer than the representable range (~584 years) *or* the clock was
257    /// manually corrupted.
258    pub fn time_since_epoch(&self) -> UnixNanos {
259        // This method guarantees strict consistency but may incur a performance cost under
260        // high contention due to retries in the `compare_exchange` loop.
261        let now = nanos_since_unix_epoch();
262        loop {
263            // Acquire to observe the latest stored value
264            let last = self.load(Ordering::Acquire);
265            // Ensure we never wrap past u64::MAX – treat that as a fatal error
266            let incremented = last
267                .checked_add(1)
268                .expect("AtomicTime overflow: reached u64::MAX");
269            let next = now.max(incremented);
270            // AcqRel on success ensures this new value is published,
271            // Acquire on failure reloads if we lost a CAS race.
272            //
273            // Note that under heavy contention (many threads calling this in tight loops),
274            // the CAS loop may increase latency.
275            //
276            // However, in practice, the loop terminates quickly because:
277            // - System time naturally advances between iterations
278            // - Each iteration increments time by at least 1ns, preventing ABA problems
279            // - True contention requiring retry is rare in normal usage patterns
280            //
281            // The concurrent stress test (4 threads × 100k iterations) validates this approach.
282            if self
283                .compare_exchange(last, next, Ordering::AcqRel, Ordering::Acquire)
284                .is_ok()
285            {
286                return UnixNanos::from(next);
287            }
288        }
289    }
290
291    /// Switches the clock to **real-time mode** (`realtime = true`).
292    ///
293    /// Uses [`Ordering::SeqCst`] for the mode store, which ensures a global ordering for the
294    /// mode switch if other threads also do `SeqCst` loads/stores of `realtime`.
295    /// Typically, switching modes is done infrequently, so the performance impact of `SeqCst`
296    /// here is acceptable.
297    pub fn make_realtime(&self) {
298        self.realtime.store(true, Ordering::SeqCst);
299    }
300
301    /// Switches the clock to **static mode** (`realtime = false`).
302    ///
303    /// Uses [`Ordering::SeqCst`] for the mode store, which ensures a global ordering for the
304    /// mode switch if other threads also do `SeqCst` loads/stores of `realtime`.
305    pub fn make_static(&self) {
306        self.realtime.store(false, Ordering::SeqCst);
307    }
308}
309
310////////////////////////////////////////////////////////////////////////////////
311// Tests
312////////////////////////////////////////////////////////////////////////////////
313#[cfg(test)]
314mod tests {
315    use std::sync::Arc;
316
317    use rstest::*;
318
319    use super::*;
320
321    #[rstest]
322    fn test_global_clocks_initialization() {
323        let realtime_clock = get_atomic_clock_realtime();
324        assert!(realtime_clock.get_time_ns().as_u64() > 0);
325
326        let static_clock = get_atomic_clock_static();
327        static_clock.set_time(UnixNanos::from(500_000_000)); // 500 ms
328        assert_eq!(static_clock.get_time_ns().as_u64(), 500_000_000);
329    }
330
331    #[rstest]
332    fn test_mode_switching() {
333        let time = AtomicTime::new(true, UnixNanos::default());
334
335        // Verify real-time mode
336        let realtime_ns = time.get_time_ns();
337        assert!(realtime_ns.as_u64() > 0);
338
339        // Switch to static mode
340        time.make_static();
341        time.set_time(UnixNanos::from(1_000_000_000)); // 1 second
342        let static_ns = time.get_time_ns();
343        assert_eq!(static_ns.as_u64(), 1_000_000_000);
344
345        // Switch back to real-time mode
346        time.make_realtime();
347        let new_realtime_ns = time.get_time_ns();
348        assert!(new_realtime_ns.as_u64() > static_ns.as_u64());
349    }
350
351    #[rstest]
352    #[should_panic(expected = "Cannot set time while clock is in realtime mode")]
353    fn test_set_time_panics_in_realtime_mode() {
354        let clock = AtomicTime::new(true, UnixNanos::default());
355        clock.set_time(UnixNanos::from(123));
356    }
357
358    #[rstest]
359    #[should_panic(expected = "Cannot increment time while clock is in realtime mode")]
360    fn test_increment_time_panics_in_realtime_mode() {
361        let clock = AtomicTime::new(true, UnixNanos::default());
362        let _ = clock.increment_time(1);
363    }
364
365    #[rstest]
366    #[should_panic(expected = "AtomicTime overflow")]
367    fn test_time_since_epoch_overflow_panics() {
368        use std::sync::atomic::{AtomicBool, AtomicU64};
369
370        // Manually construct a clock with the counter already at u64::MAX
371        let clock = AtomicTime {
372            realtime: AtomicBool::new(true),
373            timestamp_ns: AtomicU64::new(u64::MAX),
374        };
375
376        // This call will attempt to add 1 and must panic
377        let _ = clock.time_since_epoch();
378    }
379
380    #[rstest]
381    fn test_mode_switching_concurrent() {
382        let clock = Arc::new(AtomicTime::new(true, UnixNanos::default()));
383        let num_threads = 4;
384        let iterations = 10000;
385        let mut handles = Vec::with_capacity(num_threads);
386
387        for _ in 0..num_threads {
388            let clock_clone = Arc::clone(&clock);
389            let handle = std::thread::spawn(move || {
390                for i in 0..iterations {
391                    if i % 2 == 0 {
392                        clock_clone.make_static();
393                    } else {
394                        clock_clone.make_realtime();
395                    }
396                    // Retrieve the time; we’re not asserting a particular value here,
397                    // but at least we’re exercising the mode switch logic under concurrency.
398                    let _ = clock_clone.get_time_ns();
399                }
400            });
401            handles.push(handle);
402        }
403
404        for handle in handles {
405            handle.join().unwrap();
406        }
407    }
408
409    #[rstest]
410    fn test_static_time_is_stable() {
411        // Create a clock in static mode with an initial value
412        let clock = AtomicTime::new(false, UnixNanos::from(42));
413        let time1 = clock.get_time_ns();
414
415        // Sleep a bit to give the system time to change, if the clock were using real-time
416        std::thread::sleep(std::time::Duration::from_millis(10));
417        let time2 = clock.get_time_ns();
418
419        // In static mode, the value should remain unchanged
420        assert_eq!(time1, time2);
421    }
422
423    #[rstest]
424    fn test_increment_time() {
425        // Start in static mode
426        let time = AtomicTime::new(false, UnixNanos::from(0));
427
428        let updated_time = time.increment_time(500);
429        assert_eq!(updated_time.as_u64(), 500);
430
431        let updated_time = time.increment_time(1_000);
432        assert_eq!(updated_time.as_u64(), 1_500);
433    }
434
435    #[rstest]
436    #[allow(clippy::cast_possible_truncation, clippy::cast_possible_wrap)]
437    fn test_nanos_since_unix_epoch_vs_system_time() {
438        let unix_nanos = nanos_since_unix_epoch();
439        let system_ns = duration_since_unix_epoch().as_nanos() as u64;
440        assert!((unix_nanos as i64 - system_ns as i64).abs() < NANOSECONDS_IN_SECOND as i64);
441    }
442
443    #[rstest]
444    fn test_time_since_epoch_monotonicity() {
445        let clock = get_atomic_clock_realtime();
446        let mut previous = clock.time_since_epoch();
447        for _ in 0..1_000_000 {
448            let current = clock.time_since_epoch();
449            assert!(current > previous);
450            previous = current;
451        }
452    }
453
454    #[rstest]
455    fn test_time_since_epoch_strictly_increasing_concurrent() {
456        let time = Arc::new(AtomicTime::new(true, UnixNanos::default()));
457        let num_threads = 4;
458        let iterations = 100_000;
459        let mut handles = Vec::with_capacity(num_threads);
460
461        for thread_id in 0..num_threads {
462            let time_clone = Arc::clone(&time);
463
464            let handle = std::thread::spawn(move || {
465                let mut previous = time_clone.time_since_epoch().as_u64();
466
467                for i in 0..iterations {
468                    let current = time_clone.time_since_epoch().as_u64();
469                    assert!(
470                        current > previous,
471                        "Thread {thread_id}: iteration {i}: time did not increase: previous={previous}, current={current}",
472                    );
473                    previous = current;
474                }
475            });
476
477            handles.push(handle);
478        }
479
480        for handle in handles {
481            handle.join().unwrap();
482        }
483    }
484
485    #[rstest]
486    fn test_duration_since_unix_epoch() {
487        let time = AtomicTime::new(true, UnixNanos::default());
488        let duration = Duration::from_nanos(time.get_time_ns().into());
489        let now = SystemTime::now();
490
491        // Check if the duration is close to the actual difference between now and UNIX_EPOCH
492        let delta = now
493            .duration_since(UNIX_EPOCH)
494            .unwrap()
495            .checked_sub(duration);
496        assert!(delta.unwrap_or_default() < Duration::from_millis(100));
497
498        // Check if the duration is greater than a certain value (assuming the test is run after that point)
499        assert!(duration > Duration::from_secs(1_650_000_000));
500    }
501
502    #[rstest]
503    fn test_unix_timestamp_is_monotonic_increasing() {
504        let time = AtomicTime::new(true, UnixNanos::default());
505        let result1 = time.get_time();
506        let result2 = time.get_time();
507        let result3 = time.get_time();
508        let result4 = time.get_time();
509        let result5 = time.get_time();
510
511        assert!(result2 >= result1);
512        assert!(result3 >= result2);
513        assert!(result4 >= result3);
514        assert!(result5 >= result4);
515        assert!(result1 > 1_650_000_000.0);
516    }
517
518    #[rstest]
519    fn test_unix_timestamp_ms_is_monotonic_increasing() {
520        let time = AtomicTime::new(true, UnixNanos::default());
521        let result1 = time.get_time_ms();
522        let result2 = time.get_time_ms();
523        let result3 = time.get_time_ms();
524        let result4 = time.get_time_ms();
525        let result5 = time.get_time_ms();
526
527        assert!(result2 >= result1);
528        assert!(result3 >= result2);
529        assert!(result4 >= result3);
530        assert!(result5 >= result4);
531        assert!(result1 >= 1_650_000_000_000);
532    }
533
534    #[rstest]
535    fn test_unix_timestamp_us_is_monotonic_increasing() {
536        let time = AtomicTime::new(true, UnixNanos::default());
537        let result1 = time.get_time_us();
538        let result2 = time.get_time_us();
539        let result3 = time.get_time_us();
540        let result4 = time.get_time_us();
541        let result5 = time.get_time_us();
542
543        assert!(result2 >= result1);
544        assert!(result3 >= result2);
545        assert!(result4 >= result3);
546        assert!(result5 >= result4);
547        assert!(result1 > 1_650_000_000_000_000);
548    }
549
550    #[rstest]
551    fn test_unix_timestamp_ns_is_monotonic_increasing() {
552        let time = AtomicTime::new(true, UnixNanos::default());
553        let result1 = time.get_time_ns();
554        let result2 = time.get_time_ns();
555        let result3 = time.get_time_ns();
556        let result4 = time.get_time_ns();
557        let result5 = time.get_time_ns();
558
559        assert!(result2 >= result1);
560        assert!(result3 >= result2);
561        assert!(result4 >= result3);
562        assert!(result5 >= result4);
563        assert!(result1.as_u64() > 1_650_000_000_000_000_000);
564    }
565}