1use std::fmt::Display;
17
18use arraydeque::{ArrayDeque, Wrapping};
19use nautilus_core::correctness::{FAILED, check_predicate_true};
20use nautilus_model::{
21 data::{Bar, QuoteTick, TradeTick},
22 enums::PriceType,
23};
24
25use crate::indicator::{Indicator, MovingAverage};
26
27const MAX_PERIOD: usize = 8_192;
28
29#[repr(C)]
31#[derive(Debug)]
32#[cfg_attr(
33 feature = "python",
34 pyo3::pyclass(module = "posei_trader.core.nautilus_pyo3.indicators")
35)]
36pub struct WeightedMovingAverage {
37 pub period: usize,
39 pub weights: Vec<f64>,
41 pub price_type: PriceType,
43 pub value: f64,
45 pub initialized: bool,
47 pub inputs: ArrayDeque<f64, MAX_PERIOD, Wrapping>,
49}
50
51impl Display for WeightedMovingAverage {
52 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
53 write!(f, "{}({},{:?})", self.name(), self.period, self.weights)
54 }
55}
56
57impl WeightedMovingAverage {
58 #[must_use]
67 pub fn new(period: usize, weights: Vec<f64>, price_type: Option<PriceType>) -> Self {
68 Self::new_checked(period, weights, price_type).expect(FAILED)
69 }
70
71 pub fn new_checked(
80 period: usize,
81 weights: Vec<f64>,
82 price_type: Option<PriceType>,
83 ) -> anyhow::Result<Self> {
84 const EPS: f64 = f64::EPSILON;
85
86 check_predicate_true(period > 0, "`period` must be positive")?;
87
88 check_predicate_true(
89 period == weights.len(),
90 "`period` must equal `weights.len()`",
91 )?;
92
93 let weight_sum: f64 = weights.iter().copied().sum();
94 check_predicate_true(
95 weight_sum > EPS,
96 "`weights` sum must be positive and > f64::EPSILON",
97 )?;
98
99 Ok(Self {
100 period,
101 weights,
102 price_type: price_type.unwrap_or(PriceType::Last),
103 value: 0.0,
104 inputs: ArrayDeque::new(),
105 initialized: false,
106 })
107 }
108
109 fn weighted_average(&self) -> f64 {
110 let n = self.inputs.len();
111 let weights_slice = &self.weights[self.period - n..];
112
113 let mut sum = 0.0;
114 let mut weight_sum = 0.0;
115
116 for (input, weight) in self.inputs.iter().rev().zip(weights_slice.iter().rev()) {
117 sum += input * weight;
118 weight_sum += weight;
119 }
120 sum / weight_sum
121 }
122}
123
124impl Indicator for WeightedMovingAverage {
125 fn name(&self) -> String {
126 stringify!(WeightedMovingAverage).to_string()
127 }
128
129 fn has_inputs(&self) -> bool {
130 !self.inputs.is_empty()
131 }
132
133 fn initialized(&self) -> bool {
134 self.initialized
135 }
136
137 fn handle_quote(&mut self, quote: &QuoteTick) {
138 self.update_raw(quote.extract_price(self.price_type).into());
139 }
140
141 fn handle_trade(&mut self, trade: &TradeTick) {
142 self.update_raw((&trade.price).into());
143 }
144
145 fn handle_bar(&mut self, bar: &Bar) {
146 self.update_raw((&bar.close).into());
147 }
148
149 fn reset(&mut self) {
150 self.value = 0.0;
151 self.initialized = false;
152 self.inputs.clear();
153 }
154}
155
156impl MovingAverage for WeightedMovingAverage {
157 fn value(&self) -> f64 {
158 self.value
159 }
160
161 fn count(&self) -> usize {
162 self.inputs.len()
163 }
164
165 fn update_raw(&mut self, value: f64) {
166 if self.inputs.len() == self.period.min(MAX_PERIOD) {
167 self.inputs.pop_front();
168 }
169 let _ = self.inputs.push_back(value);
170
171 self.value = self.weighted_average();
172 self.initialized = self.count() >= self.period;
173 }
174}
175
176#[cfg(test)]
180mod tests {
181 use std::f64::{INFINITY, NAN};
182
183 use arraydeque::{ArrayDeque, Wrapping};
184 use rstest::rstest;
185
186 use crate::{
187 average::wma::WeightedMovingAverage,
188 indicator::{Indicator, MovingAverage},
189 stubs::*,
190 };
191
192 #[rstest]
193 fn test_wma_initialized(indicator_wma_10: WeightedMovingAverage) {
194 let display_str = format!("{indicator_wma_10}");
195 assert_eq!(
196 display_str,
197 "WeightedMovingAverage(10,[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])"
198 );
199 assert_eq!(indicator_wma_10.name(), "WeightedMovingAverage");
200 assert!(!indicator_wma_10.has_inputs());
201 assert!(!indicator_wma_10.initialized());
202 }
203
204 #[rstest]
205 #[should_panic]
206 fn test_different_weights_len_and_period_error() {
207 let _ = WeightedMovingAverage::new(10, vec![0.5, 0.5, 0.5], None);
208 }
209
210 #[rstest]
211 fn test_value_with_one_input(mut indicator_wma_10: WeightedMovingAverage) {
212 indicator_wma_10.update_raw(1.0);
213 assert_eq!(indicator_wma_10.value, 1.0);
214 }
215
216 #[rstest]
217 fn test_value_with_two_inputs_equal_weights() {
218 let mut wma = WeightedMovingAverage::new(2, vec![0.5, 0.5], None);
219 wma.update_raw(1.0);
220 wma.update_raw(2.0);
221 assert_eq!(wma.value, 1.5);
222 }
223
224 #[rstest]
225 fn test_value_with_four_inputs_equal_weights() {
226 let mut wma = WeightedMovingAverage::new(4, vec![0.25, 0.25, 0.25, 0.25], None);
227 wma.update_raw(1.0);
228 wma.update_raw(2.0);
229 wma.update_raw(3.0);
230 wma.update_raw(4.0);
231 assert_eq!(wma.value, 2.5);
232 }
233
234 #[rstest]
235 fn test_value_with_two_inputs(mut indicator_wma_10: WeightedMovingAverage) {
236 indicator_wma_10.update_raw(1.0);
237 indicator_wma_10.update_raw(2.0);
238 let result = 2.0f64.mul_add(1.0, 1.0 * 0.9) / 1.9;
239 assert_eq!(indicator_wma_10.value, result);
240 }
241
242 #[rstest]
243 fn test_value_with_three_inputs(mut indicator_wma_10: WeightedMovingAverage) {
244 indicator_wma_10.update_raw(1.0);
245 indicator_wma_10.update_raw(2.0);
246 indicator_wma_10.update_raw(3.0);
247 let result = 1.0f64.mul_add(0.8, 3.0f64.mul_add(1.0, 2.0 * 0.9)) / (1.0 + 0.9 + 0.8);
248 assert_eq!(indicator_wma_10.value, result);
249 }
250
251 #[rstest]
252 fn test_value_expected_with_exact_period(mut indicator_wma_10: WeightedMovingAverage) {
253 for i in 1..11 {
254 indicator_wma_10.update_raw(f64::from(i));
255 }
256 assert_eq!(indicator_wma_10.value, 7.0);
257 }
258
259 #[rstest]
260 fn test_value_expected_with_more_inputs(mut indicator_wma_10: WeightedMovingAverage) {
261 for i in 1..=11 {
262 indicator_wma_10.update_raw(f64::from(i));
263 }
264 assert_eq!(indicator_wma_10.value(), 8.000_000_000_000_002);
265 }
266
267 #[rstest]
268 fn test_reset(mut indicator_wma_10: WeightedMovingAverage) {
269 indicator_wma_10.update_raw(1.0);
270 indicator_wma_10.update_raw(2.0);
271 indicator_wma_10.reset();
272 assert_eq!(indicator_wma_10.value, 0.0);
273 assert_eq!(indicator_wma_10.count(), 0);
274 assert!(!indicator_wma_10.initialized);
275 }
276
277 #[rstest]
278 #[should_panic]
279 fn new_panics_on_zero_period() {
280 let _ = WeightedMovingAverage::new(0, vec![1.0], None);
281 }
282
283 #[rstest]
284 fn new_checked_err_on_zero_period() {
285 let res = WeightedMovingAverage::new_checked(0, vec![1.0], None);
286 assert!(res.is_err());
287 }
288
289 #[rstest]
290 #[should_panic]
291 fn new_panics_on_zero_weight_sum() {
292 let _ = WeightedMovingAverage::new(3, vec![0.0, 0.0, 0.0], None);
293 }
294
295 #[rstest]
296 fn new_checked_err_on_zero_weight_sum() {
297 let res = WeightedMovingAverage::new_checked(3, vec![0.0, 0.0, 0.0], None);
298 assert!(res.is_err());
299 }
300
301 #[rstest]
302 #[should_panic]
303 fn new_panics_when_weight_sum_below_epsilon() {
304 let tiny = f64::EPSILON / 10.0;
305 let _ = WeightedMovingAverage::new(3, vec![tiny; 3], None);
306 }
307
308 #[rstest]
309 fn initialized_flag_transitions() {
310 let period = 3;
311 let weights = vec![1.0, 2.0, 3.0];
312 let mut wma = WeightedMovingAverage::new(period, weights, None);
313
314 assert!(!wma.initialized());
315
316 for i in 0..period {
317 wma.update_raw(i as f64);
318 let expected = (i + 1) >= period;
319 assert_eq!(wma.initialized(), expected);
320 }
321 assert!(wma.initialized());
322 }
323
324 #[rstest]
325 fn count_matches_inputs_and_has_inputs() {
326 let mut wma = WeightedMovingAverage::new(4, vec![0.25; 4], None);
327
328 assert_eq!(wma.count(), 0);
329 assert!(!wma.has_inputs());
330
331 wma.update_raw(1.0);
332 wma.update_raw(2.0);
333 assert_eq!(wma.count(), 2);
334 assert!(wma.has_inputs());
335 }
336
337 #[rstest]
338 fn reset_restores_pristine_state() {
339 let mut wma = WeightedMovingAverage::new(2, vec![0.5, 0.5], None);
340 wma.update_raw(1.0);
341 wma.update_raw(2.0);
342 assert!(wma.initialized());
343
344 wma.reset();
345
346 assert_eq!(wma.count(), 0);
347 assert_eq!(wma.value(), 0.0);
348 assert!(!wma.initialized());
349 assert!(!wma.has_inputs());
350 }
351
352 #[rstest]
353 fn weighted_average_with_non_uniform_weights() {
354 let mut wma = WeightedMovingAverage::new(3, vec![1.0, 2.0, 3.0], None);
355 wma.update_raw(10.0);
356 wma.update_raw(20.0);
357 wma.update_raw(30.0);
358 let expected = 23.333_333_333_333_332;
359 let tol = f64::EPSILON.sqrt();
360 assert!(
361 (wma.value() - expected).abs() < tol,
362 "value = {}, expected ≈ {}",
363 wma.value(),
364 expected
365 );
366 }
367
368 #[rstest]
369 fn test_window_never_exceeds_period(mut indicator_wma_10: WeightedMovingAverage) {
370 for i in 0..100 {
371 indicator_wma_10.update_raw(f64::from(i));
372 assert!(indicator_wma_10.count() <= indicator_wma_10.period);
373 }
374 }
375
376 #[rstest]
377 fn test_negative_weights_positive_sum() {
378 let period = 3;
379 let weights = vec![-1.0, 2.0, 2.0];
380 let mut wma = WeightedMovingAverage::new(period, weights, None);
381 wma.update_raw(1.0);
382 wma.update_raw(2.0);
383 wma.update_raw(3.0);
384
385 let expected = 2.0f64.mul_add(3.0, 2.0f64.mul_add(2.0, -1.0)) / 3.0;
386 let tol = f64::EPSILON.sqrt();
387 assert!((wma.value() - expected).abs() < tol);
388 }
389
390 #[rstest]
391 fn test_nan_input_propagates() {
392 let mut wma = WeightedMovingAverage::new(2, vec![0.5, 0.5], None);
393 wma.update_raw(1.0);
394 wma.update_raw(NAN);
395
396 assert!(wma.value().is_nan());
397 }
398
399 #[rstest]
400 #[should_panic]
401 fn new_panics_when_weight_sum_equals_epsilon() {
402 let eps_third = f64::EPSILON / 3.0;
403 let _ = WeightedMovingAverage::new(3, vec![eps_third; 3], None);
404 }
405
406 #[rstest]
407 fn new_checked_err_when_weight_sum_equals_epsilon() {
408 let eps_third = f64::EPSILON / 3.0;
409 let res = WeightedMovingAverage::new_checked(3, vec![eps_third; 3], None);
410 assert!(res.is_err());
411 }
412
413 #[rstest]
414 fn new_checked_err_when_weight_sum_below_epsilon() {
415 let w = f64::EPSILON * 0.9;
416 let res = WeightedMovingAverage::new_checked(1, vec![w], None);
417 assert!(res.is_err());
418 }
419
420 #[rstest]
421 fn new_ok_when_weight_sum_above_epsilon() {
422 let w = f64::EPSILON * 1.1;
423 let res = WeightedMovingAverage::new_checked(1, vec![w], None);
424 assert!(res.is_ok());
425 }
426
427 #[rstest]
428 #[should_panic]
429 fn new_panics_on_cancelled_weights_sum() {
430 let _ = WeightedMovingAverage::new(3, vec![1.0, -1.0, 0.0], None);
431 }
432
433 #[rstest]
434 fn new_checked_err_on_cancelled_weights_sum() {
435 let res = WeightedMovingAverage::new_checked(3, vec![1.0, -1.0, 0.0], None);
436 assert!(res.is_err());
437 }
438
439 #[rstest]
440 fn single_period_returns_latest_input() {
441 let mut wma = WeightedMovingAverage::new(1, vec![1.0], None);
442 for i in 0..5 {
443 let v = f64::from(i);
444 wma.update_raw(v);
445 assert_eq!(wma.value(), v);
446 }
447 }
448
449 #[rstest]
450 fn value_with_sparse_weights() {
451 let mut wma = WeightedMovingAverage::new(3, vec![0.0, 1.0, 0.0], None);
452 wma.update_raw(10.0);
453 wma.update_raw(20.0);
454 wma.update_raw(30.0);
455 assert_eq!(wma.value(), 20.0);
456 }
457
458 #[rstest]
459 fn warm_up_len1() {
460 let mut wma = WeightedMovingAverage::new(4, vec![1.0, 2.0, 3.0, 4.0], None);
461 wma.update_raw(42.0);
462 assert_eq!(wma.value(), 42.0);
463 }
464
465 #[rstest]
466 fn warm_up_len2() {
467 let mut wma = WeightedMovingAverage::new(4, vec![1.0, 2.0, 3.0, 4.0], None);
468 wma.update_raw(10.0);
469 wma.update_raw(20.0);
470 let expected = 20.0f64.mul_add(4.0, 10.0 * 3.0) / (4.0 + 3.0);
471 assert_eq!(wma.value(), expected);
472 }
473
474 #[rstest]
475 fn warm_up_len3() {
476 let mut wma = WeightedMovingAverage::new(4, vec![1.0, 2.0, 3.0, 4.0], None);
477 wma.update_raw(1.0);
478 wma.update_raw(2.0);
479 wma.update_raw(3.0);
480 let expected = 1.0f64.mul_add(2.0, 3.0f64.mul_add(4.0, 2.0 * 3.0)) / (4.0 + 3.0 + 2.0);
481 assert_eq!(wma.value(), expected);
482 }
483
484 #[rstest]
485 fn input_window_contains_latest_period() {
486 let period = 3;
487 let mut wma = WeightedMovingAverage::new(period, vec![1.0; period], None);
488 let vals = [1.0, 2.0, 3.0, 4.0];
489 for v in vals {
490 wma.update_raw(v);
491 }
492 let expected: Vec<f64> = vals[vals.len() - period..].to_vec();
493 assert_eq!(wma.inputs.iter().copied().collect::<Vec<_>>(), expected);
494 }
495
496 #[rstest]
497 fn window_slides_correctly() {
498 let mut wma = WeightedMovingAverage::new(2, vec![1.0; 2], None);
499 wma.update_raw(1.0);
500 assert_eq!(wma.inputs.iter().copied().collect::<Vec<_>>(), vec![1.0]);
501 wma.update_raw(2.0);
502 assert_eq!(
503 wma.inputs.iter().copied().collect::<Vec<_>>(),
504 vec![1.0, 2.0]
505 );
506 wma.update_raw(3.0);
507 assert_eq!(
508 wma.inputs.iter().copied().collect::<Vec<_>>(),
509 vec![2.0, 3.0]
510 );
511 }
512
513 #[rstest]
514 fn window_len_constant_after_many_updates() {
515 let period = 5;
516 let mut wma = WeightedMovingAverage::new(period, vec![1.0; period], None);
517 for i in 0..100 {
518 wma.update_raw(i as f64);
519 assert_eq!(wma.inputs.len(), period.min(i + 1));
520 }
521 }
522
523 #[rstest]
524 fn arraydeque_wraps_when_full() {
525 const CAP: usize = 3;
526 let mut buf: ArrayDeque<usize, CAP, Wrapping> = ArrayDeque::new();
527 for i in 0..=CAP {
528 let _ = buf.push_back(i);
529 }
530 assert_eq!(buf.len(), CAP);
531 assert_eq!(buf.front().copied(), Some(1));
532 assert_eq!(buf.back().copied(), Some(3));
533 }
534
535 #[rstest]
536 fn arraydeque_sliding_window_with_pop() {
537 const CAP: usize = 3;
538 let mut buf: ArrayDeque<usize, CAP, Wrapping> = ArrayDeque::new();
539 for i in 0..10 {
540 if buf.len() == CAP {
541 buf.pop_front();
542 }
543 let _ = buf.push_back(i);
544 assert!(buf.len() <= CAP);
545 }
546 assert_eq!(buf.len(), CAP);
547 }
548
549 #[rstest]
550 fn new_ok_with_infinite_weight() {
551 let res = WeightedMovingAverage::new_checked(2, vec![INFINITY, 1.0], None);
552 assert!(res.is_ok());
553 }
554
555 #[rstest]
556 #[should_panic]
557 fn new_panics_on_nan_weight() {
558 let _ = WeightedMovingAverage::new(2, vec![NAN, 1.0], None);
559 }
560
561 #[rstest]
562 #[should_panic]
563 fn new_panics_on_empty_weights() {
564 let _ = WeightedMovingAverage::new(1, Vec::new(), None);
565 }
566
567 #[rstest]
568 fn inf_input_propagates() {
569 let mut wma = WeightedMovingAverage::new(2, vec![0.5, 0.5], None);
570 wma.update_raw(1.0);
571 wma.update_raw(INFINITY);
572 assert!(wma.value().is_infinite());
573 }
574
575 #[rstest]
576 fn warm_up_with_front_zero_weights() {
577 let mut wma = WeightedMovingAverage::new(4, vec![0.0, 0.0, 1.0, 1.0], None);
578 wma.update_raw(10.0);
579 wma.update_raw(20.0);
580 let expected = 20.0f64.mul_add(1.0, 10.0 * 1.0) / 2.0;
581 assert_eq!(wma.value(), expected);
582 }
583}