nautilus_indicators/momentum/
bb.rs1use std::fmt::{Debug, Display};
17
18use arraydeque::{ArrayDeque, Wrapping};
19use nautilus_model::data::{Bar, QuoteTick, TradeTick};
20
21use crate::{
22 average::{MovingAverageFactory, MovingAverageType},
23 indicator::{Indicator, MovingAverage},
24};
25
26pub const MAX_PERIOD: usize = 1_024;
27
28#[repr(C)]
29#[derive(Debug)]
30#[cfg_attr(
31 feature = "python",
32 pyo3::pyclass(module = "posei_trader.core.nautilus_pyo3.indicators", unsendable)
33)]
34pub struct BollingerBands {
35 pub period: usize,
36 pub k: f64,
37 pub ma_type: MovingAverageType,
38 pub upper: f64,
39 pub middle: f64,
40 pub lower: f64,
41 pub initialized: bool,
42 ma: Box<dyn MovingAverage + Send + 'static>,
43 prices: ArrayDeque<f64, MAX_PERIOD, Wrapping>,
44 has_inputs: bool,
45}
46
47impl Display for BollingerBands {
48 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
49 write!(
50 f,
51 "{}({},{},{})",
52 self.name(),
53 self.period,
54 self.k,
55 self.ma_type,
56 )
57 }
58}
59
60impl Indicator for BollingerBands {
61 fn name(&self) -> String {
62 stringify!(BollingerBands).into()
63 }
64
65 fn has_inputs(&self) -> bool {
66 self.has_inputs
67 }
68
69 fn initialized(&self) -> bool {
70 self.initialized
71 }
72
73 fn handle_quote(&mut self, quote: &QuoteTick) {
74 let bid = quote.bid_price.raw as f64;
75 let ask = quote.ask_price.raw as f64;
76 let mid = f64::midpoint(bid, ask);
77 self.update_raw(ask, bid, mid);
78 }
79
80 fn handle_trade(&mut self, trade: &TradeTick) {
81 let price = trade.price.raw as f64;
82 self.update_raw(price, price, price);
83 }
84
85 fn handle_bar(&mut self, bar: &Bar) {
86 self.update_raw((&bar.high).into(), (&bar.low).into(), (&bar.close).into());
87 }
88
89 fn reset(&mut self) {
90 self.ma.reset();
91 self.prices.clear();
92 self.upper = 0.0;
93 self.middle = 0.0;
94 self.lower = 0.0;
95 self.has_inputs = false;
96 self.initialized = false;
97 }
98}
99
100impl BollingerBands {
101 #[must_use]
108 pub fn new(period: usize, k: f64, ma_type: Option<MovingAverageType>) -> Self {
109 assert!(
110 (1..=MAX_PERIOD).contains(&period),
111 "BollingerBands: period {period} out of range (1..={MAX_PERIOD})"
112 );
113 assert!(
114 k.is_finite() && k > 0.0,
115 "BollingerBands: k must be positive and finite (received {k})"
116 );
117
118 Self {
119 period,
120 k,
121 ma_type: ma_type.unwrap_or(MovingAverageType::Simple),
122 ma: MovingAverageFactory::create(ma_type.unwrap_or(MovingAverageType::Simple), period),
123 prices: ArrayDeque::new(),
124 has_inputs: false,
125 initialized: false,
126 upper: 0.0,
127 middle: 0.0,
128 lower: 0.0,
129 }
130 }
131
132 pub fn update_raw(&mut self, high: f64, low: f64, close: f64) {
133 let typical = (high + low + close) / 3.0;
134
135 if self.prices.len() == self.period {
136 let _ = self.prices.pop_front();
137 }
138 let _ = self.prices.push_back(typical);
139 self.ma.update_raw(typical);
140
141 if !self.initialized {
142 self.has_inputs = true;
143 if self.prices.len() >= self.period {
144 self.initialized = true;
145 }
146 }
147
148 let std = fast_std_with_mean(
149 self.prices.iter().rev().take(self.period).copied(),
150 self.ma.value(),
151 );
152
153 self.upper = self.k.mul_add(std, self.ma.value());
154 self.middle = self.ma.value();
155 self.lower = self.k.mul_add(-std, self.ma.value());
156 }
157}
158
159#[must_use]
160pub fn fast_std_with_mean<I>(values: I, mean: f64) -> f64
161where
162 I: IntoIterator<Item = f64>,
163{
164 let mut var_acc = 0.0_f64;
165 let mut count = 0_usize;
166
167 for v in values {
168 let diff = v - mean;
169 var_acc += diff * diff;
170 count += 1;
171 }
172
173 if count == 0 {
174 return 0.0;
175 }
176
177 let variance = var_acc / count as f64;
178 variance.sqrt()
179}
180
181#[cfg(test)]
185mod tests {
186 use rstest::rstest;
187
188 use super::*;
189 use crate::stubs::bb_10;
190
191 #[rstest]
192 fn test_name_returns_expected_string(bb_10: BollingerBands) {
193 assert_eq!(bb_10.name(), "BollingerBands");
194 }
195
196 #[rstest]
197 fn test_str_repr_returns_expected_string(bb_10: BollingerBands) {
198 assert_eq!(format!("{bb_10}"), "BollingerBands(10,0.1,SIMPLE)");
199 }
200
201 #[rstest]
202 fn test_period_returns_expected_value(bb_10: BollingerBands) {
203 assert_eq!(bb_10.period, 10);
204 assert_eq!(bb_10.k, 0.1);
205 }
206
207 #[rstest]
208 fn test_initialized_without_inputs_returns_false(bb_10: BollingerBands) {
209 assert!(!bb_10.initialized());
210 }
211
212 #[rstest]
213 fn test_value_with_all_higher_inputs_returns_expected_value(mut bb_10: BollingerBands) {
214 let high_values = [
215 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0,
216 ];
217 let low_values = [
218 0.9, 1.9, 2.9, 3.9, 4.9, 5.9, 6.9, 7.9, 8.9, 9.9, 10.1, 10.2, 10.3, 11.1, 11.4,
219 ];
220 let close_values = [
221 0.95, 1.95, 2.95, 3.95, 4.95, 5.95, 6.95, 7.95, 8.95, 9.95, 10.05, 10.15, 10.25, 11.05,
222 11.45,
223 ];
224
225 for i in 0..15 {
226 bb_10.update_raw(high_values[i], low_values[i], close_values[i]);
227 }
228
229 assert!(bb_10.initialized());
230 assert_eq!(bb_10.upper, 9.884_458_228_895_1);
231 assert_eq!(bb_10.middle, 9.676_666_666_666_666);
232 assert_eq!(bb_10.lower, 9.468_875_104_438_231);
233 }
234
235 #[rstest]
236 fn test_reset_successfully_returns_indicator_to_fresh_state(mut bb_10: BollingerBands) {
237 bb_10.update_raw(1.00020, 1.00050, 1.00030);
238 bb_10.update_raw(1.00030, 1.00060, 1.00040);
239 bb_10.update_raw(1.00070, 1.00080, 1.00075);
240
241 bb_10.reset();
242
243 assert!(!bb_10.initialized());
244 assert_eq!(bb_10.upper, 0.0);
245 assert_eq!(bb_10.middle, 0.0);
246 assert_eq!(bb_10.lower, 0.0);
247 assert_eq!(bb_10.prices.len(), 0);
248 }
249
250 #[rstest]
251 #[should_panic(expected = "k must be positive")]
252 fn test_new_panics_on_zero_k() {
253 let _ = BollingerBands::new(10, 0.0, None);
254 }
255
256 #[rstest]
257 #[should_panic(expected = "k must be positive")]
258 fn test_new_panics_on_negative_k() {
259 let _ = BollingerBands::new(10, -2.0, None);
260 }
261
262 #[rstest]
263 #[should_panic(expected = "k must be positive")]
264 fn test_new_panics_on_nan_k() {
265 let _ = BollingerBands::new(10, f64::NAN, None);
266 }
267
268 #[rstest]
269 fn test_std_dev_uses_sliding_window() {
270 let mut bb = BollingerBands::new(3, 1.0, None);
271
272 for v in 1..=6 {
273 bb.update_raw(f64::from(v), f64::from(v), f64::from(v));
274 }
275
276 let expected_mid: f64 = (4.0 + 5.0 + 6.0) / 3.0;
277 let variance = (6.0 - expected_mid).mul_add(
278 6.0 - expected_mid,
279 (4.0 - expected_mid).mul_add(
280 4.0 - expected_mid,
281 (5.0 - expected_mid) * (5.0 - expected_mid),
282 ),
283 ) / 3.0;
284 let expected_std = variance.sqrt();
285
286 assert!((bb.middle - expected_mid).abs() < 1e-12);
287 assert!((bb.upper - (expected_mid + expected_std)).abs() < 1e-12);
288 assert!((bb.lower - (expected_mid - expected_std)).abs() < 1e-12);
289 }
290}